年間授業計画

教科 数学 科目 数学 I 墨田工科高等学校 令和7年度

単位数: 2 単位 教 科: 数学 科 目: 数学 I

対象学年組:第 1 学年 1 組~ 5 組

教科担当者: 使用教科書: (実教出版 新編 数学 I)

教科 数学 の目標:

【知 識 及 び 技 能】 数学の基礎知識や基礎計算力が身に付いており、基本的な問題が解ける。 【思考力、判断力、表現力等】 応用問題、やや難しい問題が解け、数学的な考え方をすることができる。

【学びに向かう力、人間性等】 提出物を指定された通りの内容で期限内提出ができ、授業に熱心に取り組んでいる。

科目 数学 I の目標:

【知識及び技能】	【思考力、判断力、表現力等】	【学びに向かう力、人間性等】
3 .	問題が解け、応用問題をきちんと式を書いて解け、	授業中や考査前の課題プリントを正しく解答されて おり、指定された通りの内容で期限内に提出されて いる。

	単元の具体的な指導目標	指導項目・内容	評価規準	知	思	態	配当 時数
	整式の用語がわかる 整式の加法減法ができる 整式の乗法ができる 整式の乗法ができる 乗法公式を用いて展開ができる	1章 数と式 1節 式の計算 1、整式とその加減 2、整式の乗法	・単項式や多項式について次数、係数、定数項などが正確に求められる。 ・整式の加法と減法の計算ができる。 ・指数法則を用いて整式の情報の計算ができる。 ・式の展開が正確にできる。		0	0	5
	簡単な因数分解ができる 公式を使い因数分解ができる	3、因数分解	・式の形に着目して共通項を見つけて因数分解できる。 ・公式を利用して基本的な因数分解ができる。 ・見通しをもって因数分解ができる。		0	0	6
	定期考査	定期考査		0			1
学期	実数の用語を理解し分類できる根号を 含む式の計算ができる 分母の有理化ができる	2節 実数 1、実数 2、根号を含む式の計算	・有理数と無理数の違いがわかる。 ・絶対値の意味を理解し、値を求められる。 ・根号を含む式の加法、減法、乗法の計算ができる。 ・分母の有理化ができる。		0	0	6
	を用いて1次不等式が解ける。	3節 1次不等式 1、不等号と不等式 2、不等式の性質 3、1次不等式	・大小関係を不等式で表すことができる。 ・不等式の性質を用いて1次不等式が解ける。 ・連立不等式の解の意味を理解し、数直線上で領域を表せる。 ・数量関係を不等式を用いて立式し、答を導き出せる。		0	0	6
	定期考査	定期往査		0			1

	1次関数のグラフをかける 2次関数の意味を理解している。 頂点が原点のグラフをかける。	3章 2次関数 1節 2次関数とそのグラフ 1、関数とグラフ 2、2次関数のグラフ	・関数の定義やf(x)表記での関数の値を理解し求められる。 ・1 次関数のグラフがかける。 ・原点を頂点とする2次関数の特徴を理解し、座標平面にグラフをかける。		0	0	5
	頂点が原点以外の2次関数のグラフがかける。 平方完成ができる。 平方完成ができる。 平式を変形して原点以外の頂点をもつ2次 関数のグラフがかける。		 ・頂点が原点以外のグラフがかける。 ・平方完成の計算ができる。 ・平方完成を利用して頂点を求められる。 		0	0	7
2	定期考査	定期考査		0			1
学期	2次関数の最大値・最小値の意味を理解 し求められる。	3、2次関数の最大・最小	・定義域が無い2次関数の最大値・最小値を求められる。 ・定義域がある2次関数の最大値・最小値を求められる。		0	0	6
	導ける。	4 、2 次関数の決定	・頂点や通る点など、ある条件を満たす2次関数のグラフの式を求められる。		0	0	6
	定期考査	定期考査		0			1

							70
	L		-				合計
学期							
3	定期考査	定期考査		0			1
	角を鋭角から鈍角まで拡張した場合の 三角比の定義を理解し、値を求められ る。	3、三角比の拡張	・座標平面を用いて、鈍角に拡張した三角比の値を求められる。 ・象限と符号に注意して三角比の値を正確に求められる。 ・補角、余角の三角比の関係を理解し、式計算できる。		0	0	9
	弦、正接の意味を理解する。 三角比の表の見方を理解し、およその 角の大きさや辺の長さを求められる。	2、三角比の性質	・具体的な直角三角形について三角比を求められる。 ・三角比の表を用いて、およその角の大きさや辺の長さを求められる。 ・三角比の相互関係を用いて残りの三角比を求められる。		0	0	9