教科:理科科目:物理基礎

都立墨田川高校 学力スタンダード 学習指導要領 ア 運動の表し方 (1) ・測定値の「加法・減法」と「乗法・除法」の有効数字 物 (ア) 物理量の測定と扱い方 体 身近な物理現象について、物理量の測定と の処理の違いについて理解する。 \mathcal{O} 表し方、分析の手法を理解すること。 ・物理量の定義を理解し、定義に基づいて基本単位を組 み合わせて組立単位で表現できる。 運 動 لح (イ) 運動の表し方 ・物体の速度について、ベクトル量として取り扱うこと 工 物体の運動の表し方について、直線運動を ネ ができる。 中心に理解すること。 ・平面上の合成速度や相対速度についての計算ができる。 ル ギ (ウ) 直線運動の加速度 ・等加速度直線運動のv-tグラフから公式を導き出すこ 物体が直線上を運動する場合の加速度を理 とができる。 解すること。 イ 様々な力とその働き (ア) 様々な力 ・浮力が働く仕組みを図に描いて説明できる。 物体に様々な力が働くことを理解するこ と。 (イ) 力のつり合い ・力のつり合いを利用して、様々な力の大きさを求める 物体に働く力のつり合いを理解すること。 ことができる。 (ウ) 運動の法則 ・物体に働く力について、つり合いの関係と、作用反作 用の関係にある力を図に描いて説明できる。 運動の三法則を理解すること。 ・慣性の法則を理解し、慣性と質量との関係について説 明できる。 ・動滑車を含む物体、空気抵抗の加わる物体、2段重ね で摩擦が働く物体などの運動方程式を立て、計算でき る。 ・落下運動のグラフを基に、重力加速度を導き出すこと (エ) 物体の落下運動 物体が落下する際の運動の特徴及び物体に ができる。 働く力と運動の関係について理解すること。 ・斜方投射について水平方向、鉛直方向の運動に分けて、 それぞれの特徴を図に描いて説明できる。

都立墨田川高校 学力スタンダード 学習指導要領 ウ 力学的エネルギー ・ばねの弾性力が物体に及ぼす仕事を計算できる。 (ア) 運動エネルギーと位置エネルギー 運動エネルギーと位置エネルギーについ ・仕事率が「力×速度」になる公式を導くことができる。 て、仕事と関連付けて理解すること。 ・仕事とエネルギーとの関係から運動方程式を用いて、 運動エネルギーや重力、弾性力による位置エネルギー の公式を導き出すことができる。 (イ) 力学的エネルギーの保存 ・複数の物体が関係した力学的エネルギーの保存につい 力学的エネルギー保存の法則を仕事と関連 て理解する。 ・摩擦力などの非保存力が働く場合、力学的エネルギー 付けて理解すること。 と仕事との関係について図に描いて説明できる。 ア熱 (2)(ア) 熱と温度 絶対温度と原子・分子の熱運動との関係及び絶対零度 様 熱と温度について、原子や分子の熱運動と の概念を理解する。 Þ いう視点から理解すること。 ・物質が変化する(状態変化を含む)際の潜熱や熱量に な 関する計算ができる。 物 (イ) 熱の利用 ・熱の移動及び熱と仕事の変換について説明でき、熱効 玾 現 熱の移動及び熱と仕事の変換について理解 率に関する計算ができる。 象 すること。 لح エ ネ イ 波 (ア) 波の性質 ・横波表示に変換された縦波に関して、疎密の位置や媒 ル ギ 波の性質について、直線上を伝わる場合を 質の運動方向などを理解する。 ・定常波の腹や節の位置と間隔について理解する。 中心に理解すること。 ・条件によって、どのような定常波ができるかを理解す \mathcal{O} 利 る。 用 (イ) 音と振動 ・物体の固有振動数と共振・共鳴の関係について説明で 気柱の共鳴、弦の振動及び音波の性質を理 解すること。 ・弦の振動や気柱共鳴について、弦を伝わる速度の変化 や温度による音速の変化、開口端補正を含めて理解す る。

教科:理科科目:物理基礎

学習指導要領 都立墨田川高校 学力スタンダード ウ電気 ・抵抗率と抵抗の関係式を理解し、抵抗率を用いて抵抗 (ア)物質と電気抵抗 物質によって抵抗率が異なることを理解す 値、複数の抵抗の合成抵抗を計算できる。 ること。 ・交流を直流に変換する方法で、ダイオードを用いた整 (イ) 電気の利用 交流の発生、送電及び利用について、基本 流回路について理解する。 ・交流の電圧を変える仕組みを理解する。 的な仕組みを理解すること。 ・周波数と波長の関係について理解し、大きい周波数の 電波ほど多くの情報を伝えられることなど、電磁波が 現代の社会生活に利用されていることについて具体例 を挙げて説明できる。 エ エネルギーとその利用 (ア) エネルギーとその利用 ・電気エネルギーを得るために利用しているエネルギー 人類が利用可能な水力、化石燃料、原子力、 変換の過程について理解する。 太陽光などを源とするエネルギーの特性や利 ・原子炉の構造や原子力発電の仕組みを理解し、核融合 用などについて、物理学的な視点から理解す 反応の簡単な原理について知る。 ・放射線の人体への影響や医療、工業、農業などへの利 ること。 用について理解する。 オ 物理学が拓く世界 (ア) 物理学が拓く世界 ・物理学の成果や応用が日常生活や社会で利用されてい 「物理基礎」で学んだ事柄が、日常生活や ることについて、例えばGPSは三つ以上の人工衛星 それを支えている科学技術と結び付いている から出る電波を受信することで受信地点の緯度・経度 を測定できることなどを説明できる。 ことを理解すること。