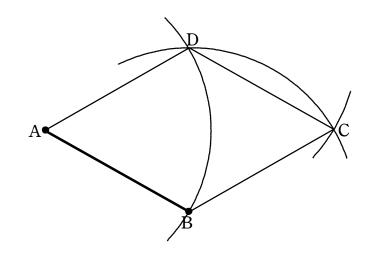
正答表

数

学

	1	
〔問 1〕	2	^{問1} 5
〔問 2〕	$x=1$, $y=\frac{1}{3}$	5
〔問 3〕	-3 , 1	問3
〔問 4〕	b = 240 - a	5
〔問 5〕	32	5
〔問 6〕		問6 7



				2			
〔問 1〕		(0	,	$\frac{3}{2}$)	5
〔問 2〕				$-\frac{3}{5}$			5
〔問 3〕	(1)			24		cm ²	問3(1) 5
	(2)		【途中	つの式や	計算など	[]	問3(2)

A(3,9), B(-1,1), E(-3,9) から 直線AB の傾きは $\dfrac{9-1}{3-(-1)}$ = 2 で,

2点A, E はy軸に関して対称であるので, 直線EDの傾きは-2,

線分AE 上の点(-1,9)を P とすれば, AP:PE=2:1で、AD:DB=3:1から、 \triangle DEP= $\frac{1}{3}\triangle$ ADE= $\frac{1}{3}\times\frac{3}{4}\triangle$ ABE = $\frac{1}{4}\triangle$ ABE= \triangle BDE

したがって、点Pを通り直線DEに平行な直線と曲線mとの交点のうちx座標が正である点が条件を満たす。

傾き -2 と点 P の座標 (-1,9)から 直線 FP の y 切片は 7 ,式は y=-2x+7点 $F(t,t^2)$ がこの直線上にあるから,

$$t^2 = -2t + 7$$

整理し,t>0 から $t=-1+2\sqrt{2}$

(答え)
$$-1+2\sqrt{2}$$

正 答 表

数

学

		3		
〔問 1〕		$\frac{8\pi}{9}$	cm	^{問1}
〔問 2〕		80	度	5
〔問 3〕	(1)	【証明】		問3(1)

 \triangle ACF と \triangle AGB において,

AC に対する円周角であるから、

$$\angle AFC = \angle ABG \cdots \bigcirc$$

条件から、 $\widehat{CF} = \widehat{EB}$ で、

円周角の定理より

$$\angle CAF = \angle GAB \cdots ②$$

①, ②より

2組の角がそれぞれ等しいから,

$$\triangle ACF \Leftrightarrow \triangle AGB$$

		4			
〔問 1〕		$4\sqrt{14}$	cm^2	5	
〔問 2〕		<u>16</u> 9	cm^2	5	
〔問 3〕	(1)	5	cm	問3(1) 5	
	(2)	【途中の式や計算など】		問3(2)	
アナア DCDE のおりがのませる D					

正方形 BCDE の対角線の交点を P とすると、

平面ABD \bot 平面ACE であることから、 点D から平面ACE までの距離はDP で、

点 M から平面ACE までの距離は $rac{1}{2}DP$,

したがって,

$$V = \frac{\triangle ACE \times BP}{3} + \frac{\triangle ACE \times PD}{3}$$
$$= \frac{\triangle ACE \times BD}{3}$$

$$W = \frac{\triangle ACN}{3} \times \frac{PD}{2} = \frac{\triangle ACE}{6} \times \frac{BD}{4}$$
$$= \frac{\triangle ACE \times BD}{24} = \frac{1}{8}V$$

以上から
$$V:W=1:\frac{1}{8}=8:1$$

[問 3] (2) S: T = 3: 4 **問3(2)** 5

(答え) V:W=8:1