年間授業計画 様式例

高等学校 令和7年度 (3 学年用) 教科 理科 科目 化学演習 科: 理科 科 目: 化学演習 単位数: 4 単位

 教 科: 理科
 科 目: 化学演習

 対象学年組:第 3 学年 1 組~ 8 組

 教科担当者:(田口)

使用教科書: (化学704 化学 実教出版

教科 理科 の目標:

【知識及び技能】身近な現象の科学的な基本知識を得る。

【思考力、判断力、表現力等,身近な現象の化学的な基本原理や法則を理解する。

【学びに向かう力、人間性等】身近な現象を通して、科学的に探究する態度を身につける。

科目 化学演習 の目標:

【知識及び技能】	【思考力、判断力、表現力等】	【学びに向かうカ、人間性等】		
身近な現象を通して、化学の基本的な知識を 身につける。	身近な現象を通して、化学の基本法則や原理を 理解する。	身近な現象を通して、科学的に探究しようとする態度や、課題を積極的に解決しようとする態度を身につける。		

	単元の具体的な指導目標	指導項目・内容	評価規準	知	思	態	配当 時数
1	A 電池 【知識及び技能】 電池のしくみを理解する。 【思考力、判断力、表現力等】 電池の反応を理解する。 【学びに向かう力、人間性等】 問題演習に主体的に取り組む。	 - 指導事項 電池のしくみ ダニエル電池、鉛 蓄電池、燃料電池のしくみと反応 ・教材 カイセスノート 	【知識・技能】 電池のしくみを酸化還元の視点で理解できる。 る。 【思考・判断・表現】 鉛蓄電池や燃料電池などの実用電池のしくみと 電極での反応を理解できる。 【主体的に学習に取り組む態度】 問題演習に主体的に取り組む。	0	0	0	6
	B 電気分解 【知識及び技能】 電気分解のしくみを理解する。 【思考力、判断力、表現力等】 陽極・陰極の反応を理解する。 【学びに向かう力、人間性等】 問題演習に取り組む。	・指導事項 電気分解のしくみ 塩化銅(Ⅱ)水溶液、NaOH水溶液、 硫酸の電気分解の両極での反応 ・教材 教科書 プリント アクセス ノート	【知識・技能】 電気分解のしくみを酸化還元の視点で理解できる。 【思考・判断・表現】 陽極・陰極の反応を理解できる。 【主体的に学習に取り組む態度】 問題演習に主体的に取り組む。	0	0	0	11
学	定期考査		学習内容が理解できているか。	0	0		1
期	C 反応の速さとしくみ 【知識及び技能】 反応の速さを表すことができる。 【思考力、判断力、表現力等】 化学反応式を反応速度の関係を理解 する。 【学びに向かう力、人間性等】 問題演習に取り組む。 D 化学平衡 【知識及び技能】 化学平衡について説明できる。 【思考力、判断力、表現力等】 ルシャトリエの原理を理解する。 【学びに向かう力、人間性等】 問題演習に取り組む。	・指導事項 反応の速さの表し方 反応の速さを決める条件 遷移状態と活性化エネルギー ・教材 教科書、プリント アクセスノート ・指導事項 化学平衡とは何か 平衡の移動 ルシャトリエの原理 電離平衡 ・教材 教科書 プリント アクセスノート	【知識・技能】 反応の速さの表し方を理解している。 【思考・判断・表現】 化学反応式の係数と反応速度の関係を理解しており、反応速度の比を表すことができる。 【主体的に学習に取り組む態度】 問題演習を主体的に取り組みことができる。 【知識・技能】 化学平衡について説明できる。 【思考・判断・表現】 条件によって平衡がどちらに移動するかを答えられる。 【主体的に学習に取り組む態度】 問題演習に主体的に取り組む。	0	0	0	27
	定期考査		学習内容が理解できているか。	0	0		1
	E 無機物質 【知識及び技能】 非金属元素・金属元素の性質や特 徴を理解する。 【思考力、判断力、表現力等】 非金属元素・金属元素の反応性の特 徴を理解する。 【学びに向かう力、人間性等】 無機物質と日常生活との関わりを調 べようとする。	教科書 プリント アクセスノート	【知識・技能】 非金属元素・金属元素の単体や化合物の性質や 特徴を認明できる。 【思考・判断・表現】 非金属元素・金属元素の単体や化合物の反応性 を関可きる。 【主体的に学習に取り組む態度】 演習問題に主体的に取り組む。	0	0	0	29
2 学	定期考査		学習内容が理解できているか。	0	0		
期	F 有機化合物 【知識及び技能】 有機化合物の構造の特徴を構造式や 模型を用いて理解する。 【思考力、判断力、表現力答】 有機化合物の構造と性質の関連を理 解する。 【学びに向かう力、人間性等】 有機化合物の構造と反応性の関連を 理解する。	アルデヒド カルボン酸 芳香族 炭化水素 ・教材 教科書 プリント ・端末	【知識・技能】 有機化合物の構造と分類を関連付けられる。 【思考・判断・表現】 有機化合物の分類と反応の特徴を関連付けられる。 【主体的に学習に取り組む態度】 演習問題に主体的に取り組む。	0	0	0	29
_	定期考査 C 天然喜公スルタ物		学習内容が理解できているか。	0	0		
3 学期	G 天然高分子化合物 【知識及び技能】 糖類の分類と名称を知る。 【思考力、判断力、表現力等】 糖類の構造・存在例を理解する。 【学びに向かう力、人間性等】 実験によって糖類の性質を理解する。	 指導事項 単糖類 二糖類 多糖類 クンパク質 アミノ酸 ・教材 教科書 プリント アクセスノート ・端末 formsでの振り返り 	【知識・技能】 糖類の分類と名称、アミノ酸の名称を知る。 【思考・判断・表現】 糖類・アミノ酸の特徴的な構造を理解する。 【主体的に学習に取り組む姿勢】 実験によって糖類の性質を理解しようとする。	0	0	0	24
	H 合成高分子化合物 【知識及び技能】 合成繊維や合成樹脂の存在例を理解する。 【思考力、判断力、表現力等】 合成樹脂の構造や性質を理解する。 【学びに向かう力、人間性等】 合成樹脂の性質を実験によって理解する。	・教材教科書 プリント アクセスノート・端末	【知識・技能】 ナイロンなどの高分子の構造の特徴をつかむ。 【思考・判断・表現】 ナイロンなどの高分子の生成の反応の特徴をつ かむ。 【主体的に取り組む姿勢】 実験によって性質を理解しようとする。	0	0	0	12 合計 140