学習指導要領 武蔵丘高校 学力スタンダード ア 化学と人間生活とのかかわり (1) 化 (ア) 人間生活の中の化学 ・金属や合金の組成とその用途について、歴史を踏ま 学 日常生活や社会を支える物質の利用とその えて理解する。 لح 製造の例を通して、化学に対する興味・関心 ・プラスチックの特性を知り、種類とその用途につい を高めること。 て理解する。 人 間 ・セラミックスの特性とその用途について理解し、金 生 (イ) 化学とその役割 属・プラスチック・セラミックスの性質違いと用途 活 日常生活や社会において物質が適切に使用 を比較することができる。 されている例を通して、化学が果たしている ・身の周りにある化学物質に「興味を持ち」「利用の 役割を理解すること。 際に注意を払う」必要を理解する。 イ 物質の探究 ・物質を、単体・化合物・混合物に分類することがで (ア) 単体・化合物・混合物 きる。 物質の分離・精製や元素の確認などの実験 ・混合物に適した分離法を選択することができる。 を通して、単体、化合物及び混合物について ・同素体とは何かを理解し、同素体の代表例を挙げる 理解するとともに、実験における基本操作と ことができる。 物質を探究する方法を身に付けること。 ・物理変化と化学変化を見分けることができる。 (イ) 熱運動と物質の三態 ・熱運動と、温度が高くなると熱運動が激しくなるこ 粒子の熱運動と温度及び物質の三態変化と とを理解する。 の関係について理解すること。 ・原子番号や質量数を用いて陽子・中性子・電子の数を (2)ア物質の構成粒子 物 (ア) 原子の構造 求めることができ、同位体の性質を理解する。 ・電子殻について理解し、原子番号 20 までの原子の 質 原子の構造及び陽子、中性子、電子の性質 電子配置と価電子の数を表現することができる。 \mathcal{O} を理解すること。 構 ・周期表(族・周期)について理解し、代表的な族の名 成 (イ) 電子配置と周期表 元素の周期律及び原子の電子配置と周期表 称を挙げることができる。 の族や周期との関係について理解すること。 イ 物質と化学結合 ・単原子イオンの生成の原理を電子配置と関連づけて (ア) イオンとイオン結合 説明することができる。 ・イオン結合は、陽イオンと陰イオンの静電気的な引 イオンの生成を電子配置と関連付けて理解 すること。また、イオン結合及びイオン結合 力で生じること、一般に金属元素と非金属元素から なる物質はイオン結合を作りやすいことを理解す でできた物質の性質を理解すること。 る。

・イオンからなる物質の組成式を作ることができる。

イオン結晶の性質を理解する。

学習指導要領 (イ) 金属と金属結合

金属結合及び金属の性質を理解すること。

(ウ) 分子と共有結合

共有結合を電子配置と関連付けて理解する こと。また、分子からなる物質の性質を理解 すること。

ア物質量と化学反応式

(ア) 物質量

物質量と粒子数、質量、気体の体積との関 係について理解すること。

(イ) 化学反応式

化学反応式は化学反応に関与する物質とそ の量的関係を表すことを理解すること。

イ 化学反応

(ア)酸・塩基と中和

酸と塩基の性質及び中和反応に関与する物 質の量的関係を理解すること。

(イ)酸化と還元

酸化と環元が電子の授受によることを理解 すること。また、酸化還元反応と日常生活や 社会とのかかわりについて理解すること。

武蔵丘高校 学力スタンダード

- ・金属結合の原理を理解する。
- ・金属の性質を理解する。
- ・電子式と構造式を用いて、分子を表現でき、共有結 合でできている物質の共有電子対・非共有電子対の 数を答えることができる。
- ・第2周期元素の水素化合物の分子式と分子の形を答 えることができる。
- ・相対質量と原子量について理解し、相対質量と存在 比から原子量を求めることができる。
- ・原子量を用いて分子量・式量を求めることができ、 物質量と質量・気体の体積の換算ができる。
- ・化学反応式の係数の意味を理解し、反応物と生成物 が分子式やイオン式で与えられているとき、化学反 応式を書くことができる。
- ・化学反応式の量的関係について計算できる。
- 代表的な酸と塩基の価数と強弱を答えることができ る。
- ・pHについて理解し、強酸・強塩基の水素イオン濃 度からpHを求めることができる。
- ・中和反応の反応式を書くことができ、それらの水溶 液の性質と中和点を理解する。
- ・中和反応の量的関係について計算できる。
- ・酸素・水素・電子・酸化数の観点から、酸化還元反 応の化学反応式を見て、物質が酸化されているか、 還元されているかを判断できる。
- ・酸化剤、還元剤について理解し、化学反応式や酸化 数の変化から酸化剤、還元剤を見抜くことができ る。
- ・金属のイオン化傾向と電池の原理について、酸化還 元反応の観点から理解する。

物 質 \mathcal{O} 変

化

(3)

教科:<u>理科</u>科目:<u>化学基礎</u>