学習指導要領		松が谷高校 学力スタンダード		
(1)	ア式と証明	3 次式の因数分解の公式を利用することができる		
11	(ア) 整式の乗法・除法、分数式の計算	二項定理を利用して,展開式やその項の係数を求めることが		
ろ	三次の乗法公式及び因数分解の公式を理解し、	できる。二項定理を等式の証明に活用できる。		
\ \	それらを用いて式の展開や因数分解をすること。	二項定理を3 項の場合に適用することで,展開式の係数を求		
ろ	また、整式の除法や分数式の四則計算について理	めることができる。整式の割り算の計算方法を理解してい		
な	解し、簡単な場合について計算をすること。	る。整式の割り算の結果を等式で表して考		
式		えることができる。2 種類以上の文字を含む整式の割り算		
		を、1 つの文字に着目することで、1 文字の場合と同様に考		
		えることができる。分数式を分数と同じよ		
		うに約分, 通分して扱うことができる。 繁分数式を簡単にす		
		ることができる。恒等式と方程式の違いを理解している。恒		
		等式における文字の役割の違いを認識で		
		きる。恒等式となるように、係数を決定することができる。		
		分数式の恒等式の分母を払った等式が恒等式であることを		
		利用できる。恒等式の係数を決定する際		
		に,係数比較法と数値代入法とをを,比較して考察しようと		
		する。		
	(イ) 等式と不等式の証明	第2節 等式・不等式の証明 (6)		
	等式や不等式が成り立つことを、それらの基本的	恒等式A=Bの証明を,適切な方法で行うことができる。A=B		
	な性質や実数の性質などを用いて証明すること。	とA-B=0 が同値であることを利用して, 等式を証明するこ		
		とができる。与えられた条件式の利		
		用方法を考え、等式を証明することができる。		
		比例式を=kとおいて処理することができる。		
		比例式を含む等式の証明を通じて、加比の理に興味をもち、		
		考察しようとする。		
		実数の大小関係の基本性質に基づいて、自明な不等式を証明		
		することができる。		
		不等式の証明で、等号の成り立つ場合について考察できる。		
		実数の性質を利用して、不等式を証明することができる。同様な不等式を記明することができる。同様な不等式を記明することで、オトの不		
		値な不等式を証明することで、もとの不		
		等式を証明することができる。平方の大小関係を利用して、		
		不等式を証明することができる。絶対値の性質を利用し、絶対値を含む不等式を証明することができ		
		対値を含む不等式を証明することができ		
		る。不等式の証明を通じて、三角不等式に興味・関心をもち、 それを利用しようとする。相加平均・相乗平均の大小関係を		
		利用して、不等式を証明することができる。		
		⊂ ′√0		

学習指導要領

イ 高次方程式

(ア) 複素数と二次方程式

数を複素数まで拡張する意義を理解し、複素数の 四則計算をすること。また、二次方程式の解の種 類の判別及び解と係数の関係について理解するこ と。

松が谷高校 学力スタンダード

複素数の四則計算ができる。

複素数の除法の計算では,分母と分子に共役な複素数を掛け ればよいことを理解している。複素数の四則計算の結果は複 素数であることを理解している。負の数

の平方根を含む式の計算を,i を用いて処理することができ る。判別式を利用して、2次方程式の解の種類を判別するこ とができる。判別式Dの代わりにD/4

を用いても解の種類を判別できることを理解し、積極的に用 いようとする。解と係数の関係を使って、対称式の値や2次 方程式の係数を求めることができる。対

称式を基本対称式で表して、式の値を求めることができる。 2 次方程式の解を利用して、2 次式を因数分解できる。与え られた2 数を解にもつ2 次方程式が1 つ

には定まらないことを理解している。2 数を解とする2 次方 程式を作ることができる。異なる2 つの実数 α , β が正の数, 負の数, 異符号であることを, 同値な式で表現できる。2次 方程式の解の符号と、係数の符号の関係を理解している。2 次方程式の解の符号に関する問題を,解と係数の関係を利用 して解くことができる。

(イ) 因数定理と高次方程式

因数定理について理解し、簡単な高次方程式の解 を、因数定理などを用いて求めること。

整式P(x)がx-kで割り切れることを式で表現することがで きる。P(k)=0 であるk の値の見つけ方を理解し、高次式を 因数分解できる。整式を1次式で割る計算に、組立除法を積 極的に利用する。の3乗根の性質に興味・関心をもち、具体 的な問題に取り組もうとする。〔関〕高次方程式を1次方程 式や2 次方程式に帰着させることができる。因数分解や因数 定理を利用して、高次方程式を解くことができる。

高次方程式の2 重解、3 重解の意味を理解している。〔知〕 高次方程式が解αをもつことを、式を用いて表現できる。 高次方程式の虚数解から,方程式の係数を決定することがで きる。

高次方程式が虚数解a+bi を解にもてば、a-bi も解にもつ ことを利用できる。

学習指導要領

ア 直線と円

(ア) 点と直線

座標を用いて、平面上の線分を内分する点、外分 する点の位置や二点間の距離を表すこと。また、 座標平面上の直線を方程式で表し、それを二直線

の位置関係などの考察に活用すること。

松が谷高校 学力スタンダード

線分の内分点、外分点の公式を統一してとらえようとする。 線分の外分点の公式を適用する際に、分母を正にして計算し ようとする。数直線上において、2 点間の距離、線分の内分 点, 外分点の座標が求められる。座標平面上において, 2点 間の距離が求められる。図形の性質を証明する際に、計算が 簡単になるように座標軸を適切に設定できる。座標平面上に おいて、線分の内分点、外分点の座標が求められる。 図形的 条件(点対称など)を式で表現できる。えられた条件を満た す直線の方程式の求め方を理解している。切片形の公式を利 用して,直線の方

程式を求めようとする。2 直線の平行・垂直条件を理解して いて、それを利用できる。ある点を通り与えられた直線に平 行な直線, 垂直な直線の方程式を公式化し, 利用しようとす る。直線に関して対称な点の座標を求めることができる。図 形的条件(線対称など)を式で表現できる。図形F(x, y)=0が点(s, t)を通ることをF(s, t)=0 として処理できる。点 と直線の距離の公式を理解していて、それを利用できる。

(イ) 円の方程式

座標平面上の円を方程式で表し、それを円と直線 の位置関係などの考察に活用すること。

イ 軌跡と領域

軌跡について理解し、簡単な場合について軌跡を 求めること。また、簡単な場合について、不等式 の表す領域を求めたり領域を不等式で表したりす ること。

学習指導要領	松が谷高校 学力スタンダード
ア 指数関数 (ア)指数の拡張 指数を正の整数から有理数へ拡張する意義を理解 すること。	
(イ) 指数関数とそのグラフ 指数関数とそのグラフの特徴について理解し、そ れらを事象の考察に活用すること。	
イ 対数関数 (ア)対数 対数の意味とその基本的な性質について理解し、 簡単な対数の計算をすること。	
(イ) 対数関数とそのグラフ 対数関数とそのグラフの特徴について理解し、それらを事象の考察に活用すること。	
ア 角の拡張 角の概念を一般角まで拡張する意義や弧度法によ る角度の表し方について理解すること。	
イ 三角関数 (ア)三角関数とそのグラフ 三角関数とそのグラフの特徴について理解すること。	
(イ) 三角関数の基本的な性質 三角関数について、相互関係などの基本的な性質 を理解すること。	

教科:<u>数学</u>科目:<u>数学Ⅱ</u>

学習指導要領	 松が谷高校 学カスタンダード
ウ 三角関数の加法定理 三角関数の加法定理を理解し、それを用いて2倍 角の公式を導くこと。	
ア 微分の考え (ア) 微分係数と導関数 微分係数や導関数の意味について理解し、関数の 定数倍、和及び差の導関数を求めること。	
(イ) 導関数の応用 導関数を用いて関数の値の増減や極大・極小を調 べ, グラフの概形をかくこと。また, 微分の考え を事象の考察に活用すること。	
イ 積分の考え (ア) 不定積分と定積分 不定積分及び定積分の意味について理解し、関数 の定数倍、和及び差の不定積分や定積分を求める こと。	
(イ) 面積 定積分を用いて直線や関数のグラフで囲まれた図 形の面積を求めること。	

教科:<u>数学</u>科目:<u>数学Ⅱ</u>

様式 1

学習指導要領	松が谷高校	学力スタンダード

教科:<u>数 学</u> 科目:<u>数学Ⅱ</u>

様式1