令和2年度年間授業計画

教科:(設備工業)科目:(建築構造設計) 対象:(第2学年 設備工業科組)

教科担当者:(五十嵐 義徳 印) 2単位 建築構造設計 (実教出版)

1年間の計画を確認した後押印					
教科	教務	副校長	校長		

	指導内容 【年間授業計画】	科目建築構造設計の具体的な指導目標 (自校のスタンダード) 【年間授業計画】	評価の観点等	予 定 時 数
4 月	オリエンテーション 1. 静定構造物 ①. 部材に生じる力の求め方	力をベクトルで表し、合成、分解ができる。 荷重の分類と時間的分類ができる。 荷重と反力を算出できる。	授業に自主的の参加する態度 力を分析する能力 数値的に力を分解・合成する能力	5
5 月	②. 単純梁(集中・等分布・モーメント ③. 片持梁 <中間考査>	はりの分類ができ、反力、せん断力、曲げモーメントの算出 単純梁、片持ち梁に加わる力を線図で表す。	はりに加わる力を分析する能力 数値的に力を算出する能力	5
6 月	④. ラーメン構造⑤. 静定トラス飾点法、切断法	ラーメン構造とトラス構造の差異を理解する。 荷重より反力、せん断力、曲げモーメントの算出と作図	構造の特長を理解する能力 作図する能力	7
7 月	<期末考査> 1学期のまとめ	期末考査 1 学期で学んだ内容の再確認	構造設計としての全体像を理解する能力 計算による表現能力	6
8月				
9 月	2. 部材の性質と応力度 ①. 構造材料の力学的性質 ②. 断面の性質(一次・二次モーメント ③. 部材に生ずる応力度	応力一ひずみについて、理解する。 1次モーメントと図心について理解する。 2次モーメント、断面係数について理解する。	部材の力学的性質を理解する能力 断面形状による差異を理解する能力 数値的に表す能力	7
10月	④. 応力度のまとめ<中間考査>3. 梁たわみとたわみ角法	断面形状と応力度の関係について理解する。 材料に加わる荷重による「たわみ」と「たわみ角」の算出	「たわみ」に関する計算能力	7
11月	4. 鉄筋コンクリート構造 ①. ヤング係数比 ②. 柱・梁・基礎の設計 5. 鋼構造 ①許容応力度設計	鉄筋コンクリート構造及び鋼構造と構造設計の関係を理解す 荷重より反力、せん断力、曲げモーメントの算出と作図 強度確保の対策が理解できる。	構造の差異が理解できる能力 数値的に表す能力 強度補強についての理解度	6
1 2 月	<期末考査>	期末考査 学んだ内容の再確認		7
1 月	6. その他の構造 ①木構造 7. 構造設計の考え方	その他の構造物と構造設計の関係を理解する。 構造設計の考え方と、建築施工方法の関連を理解する。	構造設計の考え方についての理解	5
2 月	6. 構造設計の応用 ①緩降機の設計 ②アンカーボルトの設計	避難設備の緩降機を例にとり、フレーム及びアンカー径の算 重量機器固定を例にとり、地震時対策としてのアンカー径の	実例により、設計できる能力	8
3 月	<学年末考査>	学年末考查	建築構造物と構造設計の理解度	7