教科	科目
科学技術	SS工学技術基礎
学年	単位数
1学年	3単位
教科担当者	
金子·佐藤·伊藤·渡邉·樫村·幕田	
使用教科書	
自校作成テキスト	

教科の目標

【知識及び技能】	【思考力、判断力、表現力等】	【学びに向かう力、人間性等】
		実験や実習に安全に取り組み、取り組んだ内
科学(原理・原則的内容)と技術(応用・発展的内 容)との関連を深める	め、考祭することかできる	容をレポートにまとめることが出来る
台/との民産を床める		

科目の目標

【知識及び技能】	【思考力、判断力、表現力等】	【学びに向かう力、人間性等】
		実験や実習に安全に取り組み、取り組んだ内
科学(原理・原則的内容)と技術(応用・発展的内	め、考察することができる	容をレポートにまとめることが出来る
容)との関連を深める		

単元の具体的な指導目標	指導項目・内容	評価規準	知	思	態	配当時数
単元名: I 機械制御形 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展 的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、 考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容 をレポートにまとめることが出来る	4. 導入・デザイン画 5. N C プログラムの作成/加工 6. レーザー加工 ・教材 自校作成テキスト	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実習・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
単元名:Ⅱ電子情報工学系 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展 的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、 考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容 をレポートにまとめることが出来る	4, プリント基板製作 5, 並列回路 6, 分流器 7, 基板実装 動作確認 ・教材 自校作成テキスト	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実習・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実望・実験中に取り組むま度】 1. アポート	0	0	0	42
単元名:Ⅲバイオ・化学系 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展 的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、 考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容 をレポートにまとめることが出来る	・指導事項 1、微生物の実験 2、形質転換の基礎 3、質量・容量の測定と器具の利用 4、酸・塩基の性質 5、クロマトグラフィーによる植物色素の分離 と光 6、発熱・吸熱反応 7、けん化反応 ・教材	2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
定期考査 実施しない			_	_	_	-

単元の具	体的な指導目標	指導項目・内容	評価規準	知	思	態	配当時数
【科科的 【科学内 思験察 学験等 了等	I機械制御形 (び技能】 (で技能】 (で技能】 (で技能】 (に関する基礎的能力を身につける (理・原則的内容)と技術 (応用・発展との関連を深める)、判断力、表現力等】 (習の活動を的確にレポートにまとめ、)ことができる (向かう力、人間性等】 (で変全に取り組み、取り組んだ内容・トにまとめることが出来る	4. 導入・デザイン画 5. NCプログラムの作成/加工 6. レーザー加工 ・数材 自校作成テキスト	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実習・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
大学学院	Ⅱ電子情報工学系 (び技能】 「に関する基礎的能力を身につける 原理・原則的内容)と技術(応用・発展 との関連を深める フ、判断力、表現力等】 是習の活動を的確にレポートにまとめ、 っことができる に向かう力、人間性等】 と習に安全に取り組み、取り組んだ内容・トにまとめることが出来る	4, プリント基板製作 5, 並列回路 6, 分流器 7, 基板実装 動作確認 ・教材 自校作成テキスト	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実習・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	48
【科科的 【来考) 【来考) 【実考】 【実考】 【実表】 【実験	Ⅲバイオ・化学系で技能】 でで技能】 所に関する基礎的能力を身につける 理理・原則的内容)と技術(応用・発展 との関連を深める フ、判断力、表現力等】 遅習の活動を的確にレポートにまとめ、 っことができる こ向かう力、人間性等】 遅習に安全に取り組み、取り組んだ内容 -トにまとめることが出来る	4, 酸・塩基の性質 5, クロマトグラフィーによる植物色素の分離 と光 6, 発熱・吸熱反応 7, けん化反応 ・教材	2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
定期考查	E 実施しない						

	単元の具体的な指導目標	指導項目・内容	評価規準	知	思	態	配当 時数
	単元名: I 機械制御形 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容をレポートにまとめることが出来る	4. 導入・デザイン画 5. NCプログラムの作成/加工 6. レーザー加工 ・数材 自校作成テキスト	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実習・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
3 学期	単元名:Ⅱ電子情報工学系 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展 的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、 考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容 をレポートにまとめることが出来る	 ・指導事項 1、計測機器の使用方法 2、オームの法則に関する実験 3、CADによるパターン設計 4、ブリント基板製作 5、並列回路 6、分流器 7、基板実装 動作確認 ・教材 自校作成テキスト ・一人1台端末の活用 等 コンピュータ、ipadを活用したレポート作成など 	【知識・技能】 1. 実習・実験中に取り組み状況 2. レポート 【思考・判断・表現】 1. 実際・実験中に取り組み状況 2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	27
	単元名:Ⅲバイオ・化学系 【知識及び技能】 科学技術に関する基礎的能力を身につける 科学(原理・原則的内容)と技術(応用・発展 的内容)との関連を深める 【思考力、判断力、表現力等】 実験や実習の活動を的確にレポートにまとめ、 考察することができる 【学びに向かう力、人間性等】 実験や実習に安全に取り組み、取り組んだ内容 をレポートにまとめることが出来る	4,酸・塩基の性質5,クロマトグラフィーによる植物色素の分離と光6,発熱・吸熱反応7,けん化反応	2. レポート 【主体的に学習に取り組む態度】 1. 実習・実験中に取り組み状況 2. レポート	0	0	0	
		1					4