第四商業 高等学校 (2 学年用)

教科:理科	科目	化学基礎	単位数:	2	単位
◆対象学年組:第 2 学年 A 組~	E 組				

◆使用教科書(実教出版 化基705 高校化学基礎

◆教科: 理科 の目標:

【知 識 及 び 技 能】: 基礎的・基本的な知識・技能の習得を行い、知的好奇心や探究心をもって、自然に親しみ、科学的素養を幅広く養う

思考力、判断力、表現力等】: 身近な事物・現象に関する観察・実験等を通して理解させ、科学的な見方や考え方を養い、探究的な学習を充実する

学びに向かう力、人間性等】: 学習した基礎的・基本的な知識・技能と科学技術の成果を日常生活と関連付けて理解し、日々進歩している科学技術を自ら理解しようとする

◆科目 <u>化学基礎</u> の目標:

	単元の具体的な指導目標	指導項目• 内容	評価規準	知	思	態	配当 時数
1学期	A 物質の探究 【知識及び技能】 物質を分類する実験を行える 【思考力、判断力、表現力等】 物質の分類を判断できる 【学びに向かう力、人間性等】 身近な物質を分類して探究することができる	・純物質と混合物・混合物の分離・単体と元素・状態変化と熱運動	【知識・技能】 ・混合物の分離実験を適切に行える。 ・物質の三体における熱運動を理解できる。 【思考・判断・表現】 ・純物資と混合物判断ができる。 ・単体と元素の関係性を表現できる。 【主体的に学習に取り組む態度】 ・炎色反応の日常生活における活用例を探究できる。	0	0	0	6
	B 物質の構成粒子 【知識及び技能】 原子を構成する粒子を理解できる 【思考力、判断力、表現力等】 周期表から元素の性質を判断できる 【学びに向かう力、人間性等】 元素の日常生活における活用例を探究できる	・原子・電子配置とイオン・周期表	【知識・技能】 ・原子を構成する粒子の種類を理解できる。 【思考・判断・表現】 ・各周期の電子配置を表現できる。 ・周期表の位置から元素の特徴を判断できる。 【主体的に学習に取り組む態度】 ・周期表から元素の活用を探究できる。	0	0	0	6
	考查Ⅰ	・物質の探究 ・物質の構成粒子		0	0		1
	C 粒子の結合と結晶 【知識及び技能】 各結合による結晶の特徴を理解できる 【思考力、判断力、表現力等】 電子配置と関連付けながら結合を判断できる 【学びに向かう力、人間性等】 身の回りの結晶に関する科学技術を探究できる	・イオン結合 ・共有結合 ・金属結合 ・結晶と結合	【知識・技能】 ・各結合からできた結晶の性質を理解できる ・金属及び合金の性質を理解できる。 【思考・判断・表現】 ・電子配置から結合の特徴を理解できる。 ・物質を組成式で表現することができる。 ・共有結合を電子式と構造式の両方で表すことができる。 【主体的に学習に取り組む態度】 ・金属と合金の歴史を探究することができる。 ・イオン結晶と日常生活での活用例を関連付けることができる。	0	0	0	13
	考査Ⅱ	• 粒子の結合と結晶		0	0		1
2学期	D 物質量と化学反応式 【知識及び技能】 原子量や1 molあたりの質量などを理解できる 【思考力、判断力、表現力等】 化学反応式を書き量的関係を求めることができる 【学びに向かう力、人間性等】 化学反応式と身近な現象を関連付けることができる	・原子量、分子量、式量・アボガドロの法則・化学反応式・イオン反応式・化学反応の量的関係	【知識・技能】 ・原子量を理解できる。 ・量的関係の過不足を測定する実験操作を行える。 【思考・判断・表現】 ・分子量や式量を求めることができる。 ・化学反応式を書ける。 ・化学反応式から量的関係を判断できる。 【主体的に学習に取り組む態度】 ・化学反応式から身近な現象を探究することができる。	0	0	0	15
	考査Ⅲ	・物質量と化学反応式		0	0		1
	日 酸と塩基 【知識及び技能】 酸と塩基の性質を理解できる 【思考力、判断力、表現力等】 中和滴定から酸塩基の濃度を求めることができる 【学びに向かう力、人間性等】 身近な酸と塩基の活用例を探究できる	 ・酸と塩基 ・酸と塩基の価数と濃度 ・水素イオン濃度とpH ・中和反応 ・中和滴定 	【知識・技能】 ・酸と塩基の性質を理解できる。 ・pHの原理を理解できる。 ・p中和滴定を適切に行える。 【思考・判断・表現】 ・酸と塩基の価数と濃度を判断できる。 ・中和滴定から酸と塩基の濃度や体積を求めることができる。 【主体的に学習に取り組む態度】 ・日常生活で使用される酸と塩基を理解できる。 ・中和反応の量的関係を科学技術に関連付けて探究できる。	0	0	0	13
	考查IV	・酸と塩基		0	0		1
ご覚其	F 酸化還元反応 【知識及び技能】 酸化還元反応における酸素・水素・電子のやり取りを理解できる 【思考力、判断力、表現力等】 酸化剤と還元剤の化学反応式を書くことができる 【学びに向かう力、人間性等】 日常生活における酸化剤と還元剤を探究できる	 ・酸化還元反応 ・酸化剤と還元剤 ・酸化数 ・金属のイオン化傾向 ・電池 ・電気分解 	【知識・技能】 ・酸化還元反応の定義を理解できる。 ・金属のイオン化傾向を理解できる。 ・酸化還元反応を理解して電池を製作することができる。 【思考・判断・表現】 ・酸化された物質や還元された物質を判断できる。 ・原子の酸化数を求めることができる。 ・酸化剤と還元剤の半反応式から化学反応式を書くことができる。 【主体的に学習に取り組む態度】 ・イオン化傾向から日常生活における金属の活用例を理解できる。 ・科学技術に関連付けて電池について探究できる。	0	0	0	12
	考査Ⅴ	• 酸化還元反応		0	0		1
			1	1	I		合計